SOIL SUITABILITY

The Raw Material
- Organic soil present in the topsoil is not suitable for CEB
- Don’t use the topsoil
- Use the subsoil
- Don’t use the rock
- Remove the topsoil and use it for application
- A soil is an earth container: Sand contains gravel, sand and silt particles which are not all going to the bottom of the earth, but not all go below the water. They can be stabilized.

Soil Stabilization
- 15% gravel
- 50% sand
- 15% silt
- 20% clay
- The mix 1:6:6 is OK

A good soil for CEB is more sandy than clayey or silty
- Almost every soil can be used
- Try 1 cement + 8 soil + 4 sand
- Try 1 cement + 7 soil + 5 sand

PRODUCTION

1. **Stirring the Soil**
 - Measure all components directly in the containers (recommended for soil, cement for sand and cement)
 - Fill the containers with accuracy, as per specifications

2. **Moulding**
 - Every block of every mix must be checked
 - Packet peenimeter for the compression strength
 - Block height gauge for the height

3. **Quality Control**
 - Every block of every mix must be checked
 - Pocket peenimeter for the compression strength
 - Block height gauge for the height

4. **Stacking the Fresh Block**
 - The pile must remain covered 2 days with a plastic sheet
 - Cover immediately every row with a plastic sheet

5. **Final Curing and Stacking**
 - Water the pile daily (on top and on the 4 sides), as many times as needed, for 1 month
 - Never let the pile dry for a full month

MASONRY

- The course must be hand
- Use a piece of hose pipe, which is soaked in water
- The pointing must be done every day after laying the blocks
- Poultice effect
- A good soil with good exchanges
- RCC mixes in a Globals

GUIDELINES FOR A VILLAGE HOUSE
- A 4×4 block with 4×4 joint
- RCC mixes in a_globals
- A 4×4 block with 4×4 joint
- A well-ventilated house - all the rooms connected
- RCC mixes in aGlobals
- A 4×4 block with 4×4 joint
- A well-ventilated house - all the rooms connected
- RCC mixes in aGlobals

COMPRRESSED EARTH BLOCKS (CEB)

Applications of Compressed Earth Blocks
- Foundation, staircases, doors, windows, walls, floors, etc.
- Not for civil slabs
- Not for structural members
- Soil Stabilization for Durability
- The strength of CEB is often better than country fired bricks

Local Material for Reducing Imports
- CEB production is ideally made on the construction site itself

Limiting Reactions, No Need of Filming
- CEB are often stabilised with cement or lime. Thus, no filming is required, but curing is necessary for a month

More Eco-Friendly Than Mud Bricks
- More than 3 times energy savings
- 4 times less pollution

Cost-Saving:
- CEB are most of the time cheaper than conventional materials

A New Market Opportunity:
- Possibility to uplift labour skills and to offer a new product
- A new market in the fight against floods

Need of a Proper Soil Identification:
- It is essential to know before starting a production what to do

A Local Material for Reducing Imports:
- Possibility to uplift labour skills and to offer a new product
- Need to Manage the Soil Resources:
- It is essential to know before starting a production what to do